
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 297 (2006) 916–930

www.elsevier.com/locate/jsvi
A Kalman-filter based time-domain analysis for structural
damage diagnosis with noisy signals

Feng Gao, Yong Lu�

School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Singapore

Received 6 June 2005; received in revised form 24 April 2006; accepted 2 May 2006

Available online 5 July 2006
Abstract

In this paper, a procedure is presented for the time-domain analysis of noise-contaminated vibration signals for global

structural damage diagnosis. It extends from a previously established acceleration response-only time-domain Auto-

Regressive- with-eXogenous input (ARX) model, where the ‘‘process’’ is defined such that the acceleration response at a

given degree of freedom (dof) is regarded as the ‘‘input’’, while the accelerations at other dofs are the ‘‘state’’ with which

the ‘‘measurements’’ are associated. The novel idea in the present procedure is to retrieve the intrinsic input–output set

from noisy signals by using the Kalman filter, so that the underlying physical system is best presented to the subsequent

diagnosis operation. The theoretical basis of representing the system by pairing the raw measured input and the filtered

response through the Kalman filter is discussed. When such raw input and filtered response signals are fed into the

reference ARX model, the error feature becomes indicative of the change of the physical system. By analyzing the residual

error, the damage status of the structure can be diagnosed. Applications to numerical and experimental examples

demonstrate that the approach is effective in tackling the noises, and both the occurrence and relative extent of damage can

be assessed with an appropriate damage feature.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In the process of acquiring vibration signals from physical testing, a certain level of noise contamination is
inevitable. Subsequent analysis based on the measured signals will more or less be affected by the noise
contents in the signals. This problem could become more significant when performing model estimation and
signal prediction in the time domain. In the time-domain model estimation stage, some statistic features can be
altered by the noise; consequently the model parameters could be wrongly estimated. In the signal prediction
stage, the noise in the measurement certainly affects the performance of the model.

A time-domain analysis approach based on Auto-Regressive with eXogenous input (ARX) was proposed in
a previous paper by the authors [1] for global structural damage diagnosis. It was shown that under certain
conditions, a process can be established with the acceleration at a particular degree of freedom (dof) as
the ‘‘input’’ while the accelerations at other measured dofs as the ‘‘measurements’’ (or responses). The model
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

y(k) output time-series
ŷ; ŷðkjk � 1Þ predicted output
ŷe predicted output by reference model
yv(k) measured output with noise
yvir(k) virtual output
yv,vir(k) virtual output with virtual noise
x(k) state-vector time series
x̂ðkjkÞ posteriori predicted state-vector
x̂ðkjk � 1Þ priori predicted state-vector
u(k) input time-series
uv(k) measured input with noise
e(k) residual error time-series
q shift operator
g(k) process noise
n(k) measurement noise
c(k) measurement noise of virtual output
K diagonal matrix
s standard deviation
A state matrix
AðqÞ auto-regressive polynomial

B input matrix
BðqÞ exogenous input polynomial
C output influence matrix
D direct transmission matrix
E0, E1,y Ei input coefficients in ARMAX
G input coefficients for process noise
H(k) covariance of c(k)
H1, H2,y Hi moving average coefficients in

ARMAX
K(k) Kalman gain
K1, K2,y Ki coefficients in Kalman gain K̄

K̄ Kalman gain
M(k) posteriori estimate error covariance
Pðkjk) priori estimate error covariance
PðkjkÞ � 1 posteriori estimate of priori error

covariance
P̄ converge of priori error
P1, P2,y Pi auto-regression coefficients
Q, Q(k) process noise covariance
Q1, Q2,y Qi coefficients in input matrix
R, R(k) measurement noise covariance
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coefficients are related to the dynamic properties of the structural system under consideration. A reference
model can be established using measurements from a reference state (preferably the original state) of the
structure. Relative changes of the structural conditions with respect to the reference state can be diagnosed by
feeding the current measurements to the reference model and analyzing the residual error features. This
diagnosis procedure can be depicted by a block diagram in Fig. 1.

The approach was shown to work well under noise-free measurement conditions in detecting and locating
the damage. However, the performance of the model would deteriorate under noisy measurement conditions,
apparently due to the errors introduced by the noise in both the reference model estimation stage and the
signal prediction stage. In order to improve the situation, both aspects of the problem need to be addressed. At
this juncture, it is important to note that the current damage diagnosis is based on the relative changes of the
system; as such, the essential objective in processing the signals from the noisy measurements is to preserve
the intrinsic input–output relationship that represents the underlying physical system at the current state.
Therefore, processing the signals as a system rather than individual pieces out of the noisy measurements
becomes the most important consideration in the current effort to minimize the effect of noise.

For the general purpose of minimizing the noise effect, some methods have been proposed in the past for
application in the analysis of autoregressive models. One method is to increase the model order. This method
can increase the accuracy of the model in a noisy condition, as shown in several previous studies [2–5], and it is
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Fig. 1. ARX model-based procedure for damage diagnosis.
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commonly used in identifying the dynamic characteristics. However, due to the use of a high order model,
extra spurious modes will affect the accuracy of prediction. In this regard, the modal assurance criteria (MAC)
or coordinate MAC is usually applied to help divide structural modes and extra spurious modes. Another
method is using subspace models for identification [6]. The methods based on subspace models with discrete
filter are applicable for linear structures and recordings with wide-band measurement noise, which is usually
the case in real life situations. Among the subspace models, the Kalman filter and extended Kalman filter
(EFK) are widely adopted in studying time-domain signals [7–12].

In the present paper, the ARX model proposed in the previous study is applied in conjunction with the
Kalman filter technique to perform the structural damage diagnosis with noisy measurement signals. The
ARX model is first expressed in a state-space form, so that the noise terms can be introduced in to evaluate
their effects on the model performance. The expression of the model in a state-space form facilitates
the application of the Kalman filter. It is demonstrated on a theoretic basis that using the raw input signal as
the Kalman filter input to process the measured response signals, the raw input and the processed response
signals gives rise to a desired input–output set that well represent the underlying state of the structure. This
input–output signal set can then be fed to the reference model for damage diagnosis using appropriate residual
error features.

2. Overview of the Kalman filter

The Kalman filter is an effective tool for stochastic estimation of the state from noisy measurements.
Because of its relative simplicity and robust nature, the Kalman filter has been widely used to obtain estimates
of the state variables in practice.

The Kalman filter is essentially a set of mathematical equations [13] that aims at minimizing the estimated
error covariance in the state estimator. The Kalman Filter proceeds with a given process and measurement
equations as

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ þGgðkÞ,

yvðkÞ ¼ CxðkÞ þ mðkÞ, ð1Þ

where u(k) is the process input of the system, yv(k) represents the measurement (output), g(k) and n(k) are
input noise and output noise respectively (they are also called ‘‘process noise’’ and ‘‘measurement noise’’ or
‘‘sensor noise’’). G is the input coefficient for the process noise. In most common cases the process noise is
introduced into the system together with the input signal, and in such cases G is equal to B.

The algorithm of the Kalman filter effectively resembles that of a prediction-correction algorithm. The filter
estimates the process state and obtains the feedback from the measurement which is noisy. The Kalman filter
thus consists of two groups of equations, one performs the prediction (called ‘‘time update’’), by which the a

priori estimates for the current step is obtained based on the previous state and error covariance, and the other
does the correction (called ‘‘measurement update’’) to obtain an improved a posteriori estimate. These
equations are recursive nature and can be written [13,14] as:

Time update equations:

x̂ðk k � 1j Þ ¼ Ax̂ðk � 1 k � 1j Þ þ Buðk � 1Þ, (2)

Pðk k � 1j Þ ¼ APðk � 1 k � 1j ÞAT
þGQðk � 1ÞGT, (3)

QðkÞ ¼ Eðgðk � 1Þgðk � 1ÞTÞ, (4)

RðkÞ ¼ Eðmðk � 1Þmðk � 1ÞTÞ. (5)

Measurement update equations:

x̂ðk kj Þ ¼ x̂ðk k � 1j Þ þMðkÞ yvðkÞ � Cx̂ðk k � 1j Þ
� �

, (6)

MðkÞ ¼ Pðk k � 1j ÞCT RðkÞ þ CP k k � 1jð ÞCT
� ��1

, (7)



ARTICLE IN PRESS

Plant ŷu
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Fig. 2. Typical procedure of stochastic processing of signals with Kalman filter.
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Pðk kj Þ ¼ I�MðkÞCð ÞPðk k � 1j Þ, (8)

with Kalman Gain given by

KðkÞ ¼ AMðkÞ. (9)

Combining Eqs. (2) and (6) yields

x̂ðk k � 1j Þ ¼ Ax̂ðk � 1 k � 2j Þ þ Kðk � 1Þ yvðk � 1Þ � Cx̂ðk � 1 k � 2j Þ
� �

þ Buðk � 1Þ (10)

In these equations, x̂ denotes the estimated process state, P represents the a priori estimate error covariance,M
represents the a posteriori estimate error covariance. Given initial conditions x̂(1|0) and P(1|0), one can iterate
these equations to perform the filtering. The filter can produce an optimal estimate of the true response
measurements, ŷe ¼ ŷðkjk � 1Þ, by the following equation:

ŷðk k � 1j Þ ¼ Cx̂ðk kj � 1Þ. (11)

The block diagram shown in Fig. 2 depicts the flowchart of a standard procedure of stochastic signal
processing with Kalman filter.

The extended Kalman filter (EKF) is a generalization of the steady-state filter for time-varying systems or
linear time-invariant (LTI) systems with a non-stationary noise covariance.

The Kalman filter approach inherently has the flexibility of incorporating the system dynamics
equations into the algorithm as well as the provision for uncertainties in the system. Shi et al. [10] used a
Kalman filter algorithm to identify the model parameters in the frequency domain. Hoshiya and
Saito [12] demonstrated the application of EKF to the problem of identifying system parameters in the
frequency domain. Koh et al. [8] presented a condensation method for local damage detection of a multi-
storey frame building, in which the remedial stiffness matrix was identified by applying the EKF. Quek et al.
[9] identified the variables of state-space equation by EKF, in which the excitation was assumed to
be immeasurable, and hence was looked on as a pure white noise input excitation of Z(t) passing through a
filter, thus

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ ¼ AxðkÞ þ ZðkÞ,

yvðkÞ ¼ CxðkÞ þ nðkÞ. ð12Þ

In the next section the Kalman filter will be applied in conjunction with the proposed ARX model for filtering
the measured noisy signals for subsequent damage diagnosis purpose.

3. Analysis of the effect of using Kalman filter on the ARX model

In this section the ARX model concerned is examined for its susceptibility to the noise content in the
measured signals. The appropriate way of using the Kalman filter to process the noisy signals, given the
ultimate objective as being to preserve the state information, and the effectiveness of such an approach are
demonstrated mathematically.

In the previous paper [1], an ARX model was established to model the process of a linear system with input
as an acceleration at a specific dof and response (measurement) as accelerations at other dofs. The model was
ARX (2, 2, 0), with the orders of auto-regressive, exogenous, and delays of exogenous being 2, 2, and 0,
respectively. The damage diagnosis is achieved by analyzing the residual errors in the predicted response using
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the reference model. The ARX model is written as

yðkÞ ¼ P1yðk � 1Þ þ P2yðk � 2Þ þDuðkÞ þ E1uðk � 1Þ þ E2uðk � 2Þ; (13)

where both the model output y(k) and input u(k) are acceleration responses of the structure. P1, P2, D, E1, E2

are the model parameters. For undamped systems, these parameters can be explicitly related to the system

dynamic properties [1], namely, P1 ¼ 2U cosðK1=2DtÞUT, P2 ¼ �I, D ¼ L, E1 ¼ �U½Iþ cosðK1=2DtÞ�UTL, and

E2 ¼ U cosðK1=2DtÞUTL, where K is the eigenvalue matrix, U is the eigenvector matrix, and L denotes the
input coefficient vector. For damped systems, it is difficult to establish an explicit relationship for ARX model
coefficients and the system dynamic properties; however, the inherent association of the ARX coefficients with
the physical properties still exists [14] and this provides the underlying basis for the construction of a damage
feature with the time-domain ARX model.

In order to analyze the noise effect on the system represented by the ARX model, it is advantageous to
express the system in a state-space form. This can be done through a standard procedure (see e.g. Ref. [15]). By
introducing a variable vector x(k), the ARX model of Eq. (13) can be expressed in a state-space form, as

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ,

yðkÞ ¼ CxðkÞ, ð14Þ

where the state parameters A, B and C are related to the ARX model parameters as follows (see Appendix A
for the detail working):

A ¼

I 0 0

0

0

P1 I

P2 0

2
64

3
75; B ¼

D

Q1

Q2

2
64

3
75; C ¼ I 0 0

h i
. (14a)

Q1 ¼ E1 þ P1D; Q2 ¼ E2 þ P2D. (14b)

The process and measurement noises can be easily incorporated into the above state-space model. Consider
firstly a noise term in the measurement y, we have:

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ,

yvðkÞ ¼ CxðkÞ þ mðkÞ, ð15Þ

where yv refers to the measured output, u is supposed to be the true input signal. But as u in the present model
is actually an acceleration response at a particular dof of the structure, only a measured signal with noise, uv, is
available, unðkÞ ¼ uðkÞ þ gðkÞ, where g(k) is the noise content in the measured ‘‘input’’ signal. Consequently,
the system should be re-written as

xðk þ 1Þ ¼ AxðkÞ þ BuvðkÞ � BgðkÞ,

yvðkÞ ¼ CxðkÞ þ mðkÞ. ð16Þ

Herein g(k) and n(k) are assumed to be white noise processes with zero means and finite covariance of
sðgÞ ¼ Q and sðmÞ ¼ R, respectively.

The Kalman filter can now be applied on the model described by Eq. (16). But it is important to note that,
because the raw input uv has been used in place of the true input u which is not known, the filtered response
signals ŷ is not really an optimal estimate of the true responses y in Eq. (14). The achieved estimate of the
response signals, ŷ ¼ ŷðkjk � 1Þ, is in fact an optimal estimate of the ‘‘virtual’’ response of the system, yvir, as if
the noisy input signal were the ‘‘true’’ input, i.e.,

xðk þ 1Þ ¼ AxðkÞ þ BuvðkÞ,

yvirðkÞ ¼ CxðkÞ, ð17Þ

where the state parameters A, B and C are those of Eq. (16).
As a matter of fact, here lies the novelty of the present approach. Indeed, in the context of the current damage

diagnosis scheme which looks for the deviation from a reference state model, it is not the quality of each individual
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signal but a system relationship formed by the input–output set that ultimately determines the outcome of the
diagnosis. With an inevitable noisy uv instead of the true u, what we are looking for is actually a good representation
of the process described by Eq. (17) rather than that described by Eq. (16). In what follows, we will demonstrate the
ŷ produced from the Kalman filter using uv as input is indeed the closest estimate of yvir in Eq. (17).

Assuming the ‘‘noise’’ in the virtual measured counterpart for yvir of Eq. (17), denoted as yv,vir, is c, it has

xðk þ 1Þ ¼ AxðkÞ þ BuvðkÞ, (18a)

yv;virðkÞ ¼ CxðkÞ þ cðkÞ, (18b)

HðkÞ ¼ Eðcðk � 1Þcðk � 1ÞTÞ. (18c)

The application of the Kalman filter on this model delivers the optimal estimator by the following equations:

x̂ðk k � 1j Þ ¼ Ax̂ðk � 1 k � 1j Þ þ Buvðk � 1Þ, (19a)

Pðk k � 1j Þ ¼ APðk � 1 k � 1j ÞAT, (19b)

x̂ðk kj Þ ¼ x̂ðk k � 1j Þ þMðkÞ yv;virðkÞ � Cx̂ðk k � 1j Þ
� �

, (19c)

MðkÞ ¼ Pðk k � 1j ÞCT HðkÞ þ CP k k � 1jð ÞCT
� ��1

, (19d)

Pðk kj Þ ¼ I�MðkÞCð ÞPðk k � 1j Þ. (19e)

With the same definition of K(k) in Eq. (9), the recursion of the error covariance matrix is

Pðk þ 1jkÞ ¼ APðk k � 1j ÞAT
� KðkÞCPðk k � 1j ÞAT. (20)

The P in the Kalman filter has the definition as

Pðk þ 1jkÞ ¼ E½ðxðk þ 1Þ � x̂ðk þ 1jkÞÞðxðk þ 1Þ � x̂ðk þ 1jkÞÞT�

and

PðkjkÞ ¼ E½ðxðkÞ � x̂ðkjkÞÞðxðkÞ � x̂ðkjkÞÞT�.

The recursion of the optimal estimator becomes:

x̂ðk þ 1 kj Þ ¼ Ax̂ðk k � 1j Þ þ KðkÞeðkÞ þ BuvðkÞ, (21a)

ŷðk k � 1j Þ ¼ Cx̂ðk kj � 1Þ, (21b)

eðkÞ ¼ yv;virðkÞ � Cx̂ðk k � 1j Þ. (21c)

The residual error between ŷðk þ 1jkÞ and yvirðk þ 1Þ can be evaluated by combining Eqs. (17) and (21b), as

yvirðk þ 1Þ � ŷðk þ 1jkÞ ¼ C xðk þ 1Þ � x̂ðk þ 1 kj Þð Þ. (22a)

By Eqs. (18a) and (21a) the error for the state vector is

xðk þ 1Þ � x̂ðk þ 1 kj Þ ¼ A xðk þ 1Þ � x̂ðk k � 1j Þð Þ � KðkÞeðkÞ. (22b)

Following the definition of P in the Kalman filter, the covariance error matrix of Eqs. (22a) and (22b) is

E yvirðk þ 1Þ � ŷðk þ 1jkÞ
� �

yvirðk þ 1Þ � ŷðk þ 1 kj
� �Th i

¼ CP k þ 1jkð ÞCT, (23a)

E xðk þ 1Þ � x̂ðk þ 1 kj Þð Þ xðk þ 1Þ � x̂ðk þ 1 kj Þð Þ
T

� �
¼ Pðk þ 1jkÞ. (23b)

In these expressions, x(k) and y(k) denote the real values for the state vector x and output y at kth time
step, while x̂ðkjk � 1Þ and ŷðkjk � 1Þ denote the prediction values for x and y, respectively. It has been
demonstrated by Harvey [13] that x̂ðkjk � 1Þ is the minimum mean square linear estimator of x(t) based
on observations uv(k) and yv(k) up to time k � 1. This estimator is unconditionally unbiased and the
unconditional covariance matrix of the estimation error is the P(k|k�1) given by the Kalman filter. Therefore,
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it can be concluded that the ŷðkjk � 1Þ herein is the closest estimator to yvir(k), as the error of (ŷðkjk � 1Þ-
yvir(k)) is directly related to the error of (x̂�x).

Unfortunately it is usually difficult to obtain an explicit solution of P(k+1|k); hence it is difficult to evaluate
how close the ŷðkjk � 1Þ is to yvir(k) by an explicit equation.

4. Implementation of the Kalman filter in the ARX based damage diagnosis

4.1. ARX model estimation and signal processing using Kalman filter

When the signals y(k) and u(k) are contaminated with noise, the least-squares algorithm of an ARX model
may lead to an inaccurate estimation of the model parameters. A common method in overcoming the noise
influence on the model estimation is using the approximate maximum likelihood (ML) estimators to estimate
the model parameters, based on the Kalman filter [13]. For a stable system, the error covariance P will
converge such that the Kalman filter eventually has a time invariant solution. This solution can be
transformed into an ARMAX model [15], which can be directly used for the model estimation and prediction
to the same effect as directly using the Kalman filter. Further elaboration follows.

For a stable system, the error covariance P and the Kalman gain K converage to the steady-state values P̄
and K̄ as k!1 [13], i.e., limt!1Pðtþ 1jtÞ ¼ P̄ and limt!1KðkÞ ¼ K̄. Specializing the Kalman filter on the
model of Eq. (21), it can be written as

x̂ðk k � 1j Þ ¼ Ax̂ðk � 1 k � 2j Þ þ K̄ eðk � 1Þ þ Buvðk � 1Þ, (24a)

ŷðk k � 1j Þ ¼ Cx̂ðk kj � 1Þ, (24b)

eðk � 1Þ ¼ yvðk � 1Þ � Cx̂ðk � 1 k � 2j Þ. (24c)

By taking the Z-transform of Eqs. (24a, 24b), the following equation can be obtained [14]:

ŷðk þ 1jkÞ ¼ P1ŷðkjk � 1Þ þ P2ŷðk � 1jk � 2Þ þDunðkÞ þ E1unðk � 1Þ þ E2unðk � 2Þ

þ K1eðkÞ þ K2 � P1K1ð Þeðk � 1Þ þ K3 � P2K1ð Þeðk � 2Þ. ð25Þ

It can be further written as an ARMAX model:

yvðk þ 1Þ ¼ P1yvðkÞ þ P2yvðk � 1Þ þDunðkÞ þ E1unðk � 1Þ þ E2unðk � 2Þ

þ eðk þ 1Þ þH1eðkÞ þH2eðk � 1Þ þH3eðk � 2Þ, ð26Þ

where

E1 ¼ Q1 � P1D; E2 ¼ Q2 � P2D, (26a)

H1 ¼ K1 � P1; H2 ¼ K2 � P1K1 � P2; H3 ¼ K3 � P2K1, (26b)

K̄ ¼

K1

K2

K3

2
64

3
75. (26c)

The process parameter matrices P1, P2, D, E1, E2, Q1, and Q2 are identical to those in Eqs. (13) and (14). The
prediction ŷðk þ 1jkÞ here is the same as expressed by the steady-state Kalman filter.

For stable systems under consideration, the ARMAX model of Eq. (26) can be used to fulfill the function of
the Kalman filter in a more straightforward way. It has been found that a method utilizing ARMAX model
usually yields good estimations for the model parameters even under the condition of a relatively large noise
level [3,5,15]. A least-square approach can be applied to determine the model coefficients [P1, P2, D, E1, E2,
H1, H2, H3] of the ARMAX model (and hence the state parameters A, B and C according to Eqs. (14a) and
(14b)) . The block diagram of Fig. 3 shows the flowchart of the standard procedure of the model estimation
with the ARMAX model. Some trial numerical simulations have been performed, and the results confirmed
the satisfactory accuracy of using the ARMAX model in the estimation of the state parameters.
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4.2. Implementation for damage diagnosis

The block diagram in Fig. 4 shows the implementation procedure of the Kalman filter (ARMAX model) on
the measured input–output signals and the subsequent damage diagnosis operations. It can be summarized
into the following essential steps:
(i)
 Select the ‘‘input’’ acceleration signal (a response at a particular dof) and the output ‘‘response’’
acceleration signals as outlined in Ref. [1].
(ii)
 For a selected reference state of the structure, estimate the model parameters using the ARMAX scheme
on the corresponding set of signals. Dropping the moving average (MA) part gives rise to the reference
ARX model.
(iii)
 For any other state of the structure, acquire the input-response signals. Establish the current ARMAX
model from the set of signals acquired. Then perform the stochastic processing of the signals through the
current ARMAX model (Kalman filter) with the raw uv(k) as input, get the virtual input-response set.
(iv)
 Apply the reference ARX model established in step (i) on the above virtual input-response set, and analyze
the residual error of the ARX results and assess the damage using an appropriate residual error feature
(v)
 Repeat step (ii) to (iv) for any other state of the structure requiring diagnosis
For the diagnosis from the residual error, herein a statistical feature called CRE is employed to indicate
damage. The CRE is defined as the percentage of the error variation, as

CRE ¼ sðeÞ=sðyÞ � 100%, (27)

where sðeÞ is the covariance of the residual error when the reference model is applied on the current-state
signals (Step iv in the above procedure), and sðyÞ is the covariance of the output y(k). This feature indicates the
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percentage of unfitness of the signal to the model, and thus serves as a relative indicator of the changes in the
underlying dynamic system when compared with the CRE of the reference state.

In the next section some numerically simulated examples and an experimental study will be given to
illustrate the implementation procedure and the effectiveness of the approach in reducing the effect of noise on
the residual error for the damage diagnosis.
5. Numerical examples

In this section the effectiveness of the model under noisy condition is studied using numerical simulation.
A two-dof mass spring model, shown in Fig. 5, is considered here for the numerical simulation study.

Each point mass is 419.4 kg and the initial spring stiffness k1 and k2 are both 56.7kNm�1. The damping
ratio is assumed to be 0.05. The natural periods of the system are calculated to be T1 ¼ 0.874 s and T2 ¼ 0.334 s.

The excitation on the structure is imposed at the base by random acceleration. The unit of the input time series is
m/s2. Two types of excitation signals are considered, one is Gaussian White noise; another is a general random
noise generated from normally distributed numbers with a given standard deviation. Three random series are used,
namely, (a) Wgn1 (White noise) with a standard deviation of 1.13, (b) Randn 1 (random noise) with a standard
deviation of 1.0. The sampling time step is 0.01 s and the number of data points is chosen to be 4000 for each
sample piece. The same time step and duration are used in recording the response signals from the simulation. The
simulated acceleration responses are designated according to their excitation series, e.g., Wgn 1 and Randn 1.

The noise components Z(k) and n(k) are added into the responses after the generation of the acceleration
responses at m1 and m2 by the numerical simulations. In accordance with the assumption stated earlier, the
artificial noises Z(k) and n(k) are white noise, with zero mean and the covariance E ¼ ðZZTÞ ¼ Q, EðnnTÞ ¼ R,
EðZnT Þ ¼ 0:
5.1. Model estimation

The ARX(2,2,0) model of the two-dof mass spring system can be expressed as

AðqÞyðkÞ ¼ BðqÞuðkÞ.

Here y(k) is defined as the response at m2 and u(k) is the response at m1. q�1 is the delay operator.
A least-squares approach is applied to determine the model parameters. The procedure is performed

using Matlab system identification toolbox. When the noise-free signal are used, the model parameters are
estimated as

AðqÞ ¼ 1� 1:939 q�1 þ 0:9794 q�2, (28a)

BðqÞ ¼ 0:9952� 1:948 q�1 þ 0:9798 q�2. (28b)

This model can be looked on as the exact model of the system. It gives a covariance of the residual error with
respect to the pure signal as small as 1.0� 10�5.

When 10% noise (EðnnTÞ ¼ 0:01EðyyTÞ) is added into the output signal y(k), the ARX(2,2,0) model
estimated from the noisy reference signal becomes:

AðqÞyðkÞ ¼ BðqÞuðkÞ;
m2m1 

k1 k2

Fig. 5. A two-dof mass-spring system.
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AðqÞ ¼ 1� 1:387q�1 þ 0:4391q�2;

BðqÞ ¼ 0:9591� 1:389 q�1 þ 0:4549 q�2:

With this model the covariance of the residual error is around 0.5. Comparing with the ‘‘exact’’ model shown
in Eqs. 28(a) and 28(b), the coefficients estimated by the noisy reference signals deviate significantly from the
correct values. Consequently, the model will not predict the signal to a satisfactory accuracy. This example
demonstrates that a direct model estimation by the least-squares approach is unable to produce an accurate
ARX(2,2,0) model from noisy reference signals.

The ARMAX model, as mentioned in Section 4.1, is now considered. The model is ARMAX(2,3,3,0) (auto-
regressive, exogenous and moving average of orders 2, 3, and 3, respectively, and delays of exogenous 0). The
model is estimated from the signal with 50% noise (E(nnT) ¼ 0.25E(yyT)) in the output signal y(k), as

AðqÞyðtÞ¼ BðqÞuðtÞ þ CðqÞeðtÞ;

AðqÞ ¼ 1� 1:94q� 1þ 0:9803q�2;

BðqÞ ¼ 0:9945� 1:948q�1 þ 0:9802q�2;

CðqÞ ¼ 1� 1:903q�1 þ 0:9061q�2 þ 0:0379q�3:

It can be observed that the coefficients AðqÞ and BðqÞ are very close to the ‘‘exact’’ ARX model in Eqs. 28(a)
and 28(b). This shows that the coefficients of the ARX model can be estimated quite accurately even when the
noise content in the signal is high.

To further illustrate the influence of the noise content on the model estimation and the performance of the
estimated model, several noise scenarios of reference signals are explored, namely (refer to Table 1, first
column): (1) white noise excitation, noise-free signals; (2) white noise excitation, 10% noise in the model
output (acceleration at m2) only; (3) random excitation, 10% noise in the model output only; (4) white noise
excitation, 10% noise in both the model input (acceleration at m1) and output signals; and (5) white
noise excitation, 20% noise in both the model input and output signals. From each set of the reference signals,
the ARXmodel parameters are estimated using the ARMAX scheme as mentioned above. Subsequently, three
sets of test signals with no noise, 10% noise and 20% noise, respectively, as indicated in Table 1, are applied
on each of the above five reference ARX models. The errors in terms of CRE are summarized in Table 1.

From Table 1 it can be seen that the errors are closely correlated to the level of noise in the test signals
(viewing the table row-wise), but are relatively independent of the scenarios from which the reference model
has been established (viewing the table column-wise). The interpretations can be two folds, (1) the reference
models are estimated satisfactorily using the ARMAX scheme; and (2) the performance of the reference model
thus depends primarily on the quality of the current signals supplied for diagnosis. When the current signals
contain a high noise level, the residual errors can be high even the structural state remain unchanged.
Table 1

CRE(%) by reference models for different noise level

Reference models Testing signals under various noise levels

Randn1, noise-free signal Wgn1, 10% noise output

+10% input

Randn1, 20% noise

output+20% input

Wgn1, Noise free signal 8.63e-4 34.24 70.56

Wgn1, 10% noise in output 0.41 34.18 70.50

Randn1, 50% noise in output 1.22 34.09 70.40

Wgn1, 10% noise output

+10% input

3.21 33.93 70.12

Randn1, 20% noise

output+20% input

2.36 34.26 69.7
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5.2. Noise filtering (stochastic processing) of signals

Following the procedure described in Section 4.2, the three sets of test signals are processed through the
Kalman filter (the ARMAX model derived from each set itself) to overcome the noise effect. The processed
sets of input (raw uv) and response (ŷ) signals are then applied on the reference models, and the predicted ŷe

are compared with the above ŷ as the residual error (refer to Fig. 4). For an observation, three reference
models, designated as W1, W2 and R1, are established respectively from the signals corresponding to Wgn1
with two different noise levels and Randn1 with a 20% noise level. Table 2 summarizes the resulting residual
errors in terms of CRE for the three reference models. Comparing with the corresponding results in Table 1, it
can be seen that the error feature (CRE) are drastically reduced, from as much as 70% without the ‘‘filtering’’
process to generally below 3% using the ‘‘filtered’’ signals. This level of accuracy for the same state of the
structure indicates that the approach should be workable to diagnose sensible damages.

Now two damage scenarios are introduced in for testing the diagnosis ability of the approach, including
(a) a stiffness reduction of 20% on k2, (b) a stiffness reduction of 10% on k2. The same three reference models
as mentioned in the previous paragraph are examined. Three different sets of test signals from each of the two
damage scenarios are considered. The test signals are processed first through the Kalman filter and then
applied on the reference models. The results of the residual errors in terms of CRE are summarized in Tables 3
and 4, respectively, and the representative error results are also plotted in Fig. 6.

It can be observed that the residual error feature (CRE) for the same damage scenario are very consistent
among those with different levels of noise. The ‘‘filtering’’ process renders the results in terms of CRE from
noisy measurements to be almost as good as that from totally noise-free signals. Furthermore, the CRE value
shows a good correlation with the degree of damage; the CRE is about 23% for 20% stiffness reduction, and
about 14% for 10% stiffness reduction.

The above numerically simulated scenarios show clearly the effectiveness of the proposed approach depicted
in Fig. 4 in using noisy time-domain acceleration signals for the diagnosis of damage. In the next section the
approach is further tested on a physical experiment case.
Table 2

CRE(%) from reference signals with different noise levels after implementation of the proposed procedure

Reference models Testing signals under various noise levels

Noise-free signal Wgn1, 10% noise output

+10% input

Randn1, 20% noise

output+20% input

Wgn1 Noise free signal (Model W1) 8.63e-4 3.17 2.65

Wgn1 10% noise output +10% input

(Model W2)

3.21 1.40 2.98

Randn 1 20% noise output+20% input

(Model R1)

2.36 2.58 0.53

Table 3

CRE(%) from processed signals of damage scenario (a)

Reference models Testing signals under various noise levels

Noise-free signal Wgn1 10% noise output

+10% input

Wgn1 20% noise

output+20% input

Noise free signal 23.69 23.46 24.72

Wgn1 10% noise output

+10% input

23.31 23.03 24.08

Randn1 20% noise

output+20% input

22.92 22.56 23.18
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Fig. 6. Damage feature (CRE) for three states of structure based on stochastically processed virtual input-response set.

Table 4

CRE (%) from processed signals of damage scenario (b)

Reference models Testing signals under various noise levels

Noise-free signal Wgn1, 10% noise output

+10% input

Wgn1, 20% noise

output+20% input

Noise free signal 13.75 14.27 15.35

Wgn1 10% noise output

+10% input

13.32 13.71 14.54

Randn1 20% noise

output+20% input

13.13 13.32 13.53
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6. Experimental example

A two-storey concrete model frame was fabricated and tested on a shake table to different degrees of
damage at multiple stages. Fig. 7 shows the test setup. Low-amplitude random vibration tests were conducted
before and after each major test to get the vibration signals, and these measurements were then used for
damage diagnosis purpose. In what follows, the acceleration signals acquired from the complementary
random vibration tests for the initial state and an intermediate state with a degree of damage equivalent to
about 10% stiffness reduction [16] are analyzed using the proposed approach. The sampling rate for the data
acquisition was 1000Hz.

Table 5 lists the four sets of random vibration response signals taken from the test data for the present
application. S1-1 and S1-2 are two sets of signals from the original state (state ‘‘S1’’) of the structure, while
S2-1 and S2-2 are two sets of signals from a damaged state (state ‘‘S2’’) of the structure. For a cross
comparison, two reference ARX models are established, using signals from the original state (S1) and the
damaged state of the structure (S2), respectively.

The residual error CREs after implementing the procedure of Fig. 2 (without ‘‘filtering’’) and of
Fig. 4 (with ‘‘filtering’’), respectively, are plotted in Fig. 8. For the cases without ‘‘filtering’’ the signals
(Fig. 8a), the residual error CREs do not show clear changes of the state of the structure from the
reference state. However, from the error CRE results shown in Fig. 8b) after implementing the filtering
operation, it can be clearly observed a change of the state of the structure as compared to the reference
state. For example, when the reference state is established from S1 signals, around 8% CRE is
obtained for another set of signals from the same state of the structure, whereas as much as 20% CRE
is observed for a set of signals from the damage state of the structure. Vise versa, when the reference
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Fig. 7. Shake-table test of two-storey concrete frame model.

Table 5

Summary of measured signals from the test frame

Name of time series Description Power of base

excitation (STD)

Power of floor-1

acceleration (STD)

Power of floor-2

acceleration (STD)

S1-1 Initial state, time series

1

0.0636 0.0384 0.0444

S1-2 Initial state, time series

2

0.0651 0.0349 0.0366

S2-1 Damage state, time

series 1

0.0475 0.0311 0.0342

S2-2 Damage state time

series 2

0.0497 0.0317 0.0408
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state is established using the damage state signals, the CRE is about 10% for another set of signals
form the same state of the structure and increases to about 25% for signals from the original state of
the structure.

It should be mentioned that the results for this particular experimental case are not as good
as in the previous numerical simulated scenarios. The reason is believed not primarily because of
the quality of the measured signals; but rather because of some complication of the test model confi-
guration which involved additional masses that served for the purpose of other test requirements [16].
Further experimental verification of the approach can be carried out with other relevant experi-
mental data.
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7. Conclusions

A procedure based on Kalman filter is presented for the time-domain analysis of noise-contaminated
vibration signals for the structural damage diagnosis. The approach stems from a previously proposed ARX
model, in which the acceleration signals measured at various degrees of freedoms of a structure forms the basic
input-response set. The Kalman filter is incorporated to perform the stochastic processing of the input-
response signals containing noise. It is demonstrated that using the raw input signal and the processed
response signals to form the virtual input-response set, the underlying physical state of the structure is well
preserved. By presenting the above virtual input-response signals to the reference model, the residual error
becomes reasonably indicative to the degree of damage in the structure. The effectiveness of the proposed
approach is demonstrated using numerically simulated scenarios and an experimental example. It is shown
that using the proposed procedure the effect of noise on the outcome of the damage diagnosis is minimized,
and the residual error feature in terms of CRE using the processed set of virtual input-response signals
correlate well with the severity of damage.

It should be noted that at present the CRE feature does not have an absolute threshold for damage. It needs
to be interpreted with respect to the CRE of the reference state error, and it is presumably also dependent on
the inherent sensitivity of the measured response signals to the structural damage. For simple systems as in the
example of the paper, the percentage increase of the CRE generally correlate to the same order of percentage
stiffness change in a major component of the system. For complex systems, the threshold or the general
correlation of CRE to structural changes may need to be explored on individual case basis, along with the
selection of the measurement dofs.

Appendix A

Transformation of ARX(2, 2, 0) to state space model Eq. (14)
The ARX(2, 2, 0) model is written as

yðkÞ ¼ P1yðk � 1Þ þ P2yðk � 2Þ þDuðkÞ þ E1uðk � 1Þ þ E2uðk � 2Þ (13)

Introduce a variant vector x(k)

xðkÞ ¼

x1ðkÞ

x2ðkÞ

x3ðkÞ

8><
>:

9>=
>;

such that x(k) satisfies the following four equations [14]:

yðk � 1Þ ¼ x1ðkÞ, (a)
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x1ðkÞ ¼ x2ðk � 1Þ þDuðk � 1Þ, (b)

x2ðkÞ ¼ P1x2ðk � 1Þ þ x3ðk � 1Þ þ ðE1 þ P1DÞuðkÞ, (c)

x3ðkÞ ¼ P2x2ðk � 1Þ þ ðE2 þ P2DÞuðk � 1Þ. (d)

Here we notice the x1(k) is one step ahead of y(k), but in order to give a standard form of the state space
model, we write

yðkÞ ¼ CxðkÞ and C ¼ I 0 0
h i

.

This implies that when the model is applied, the y(k) should be shifted one step ahead, and add y(1) ¼ {0}.
Then we get the state-space model

xðk þ 1Þ ¼ AxðkÞ þ BuðkÞ;

yðkÞ ¼ CxðkÞ;
(14)

where

A ¼

I 0 0

0

0

P1 I

P2 0

2
64

3
75; B ¼

D

Q1

Q2

2
64

3
75; C ¼ I 0 0

h i
, (14a)

Q1 ¼ E1 þ P1D; Q2 ¼ E2 þ P2D. (14b)
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